Impact of vitreomacular adhesion on ranibizumab mono- and combination therapy for neovascular age-related macular degeneration

Sebastian M. Waldstein, Markus Ritter, Christian Simader, Ulrike Mayr-Sponer, Michael Kundi, Ursula Schmidt-Erfurth

PII: S0002-9394(14)00231-1
DOI: 10.1016/j.ajo.2014.04.028
Reference: AJOPHT 8905

Received Date: 6 January 2014
Revised Date: 27 April 2014
Accepted Date: 28 April 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Impact of vitreomacular adhesion on ranibizumab mono- and combination therapy for neovascular age-related macular degeneration

Sebastian M. Waldstein¹, Markus Ritter¹, Christian Simader¹, Ulrike Mayr-Sponer¹, Michael Kundi², Ursula Schmidt-Erfurth¹

1: Christian-Doppler-Laboratory for Ophthalmic Image Analysis
Vienna Reading Center, Department of Ophthalmology, Medical University of Vienna
Waehringer Guertel 18-20, AT-1090 Vienna, Austria

2: Institute of Environmental Health, Center for Public Health, Medical University of Vienna, Waehringer Guertel 18-20, AT-1090 Vienna, Austria

Short title: Vitreomacular adhesion in ranibizumab / verteporfin therapy

Address for reprints:
Christian Simader, MD MSc
Director, Vienna Reading Center
Department of Ophthalmology, Medical University of Vienna
Waehringer Guertel 18-20, 1090 Vienna, Austria
Tel: +43/1/40400/7931; Fax: +43/1/40400/7932
Email: optima@meduniwien.ac.at
Purpose:
To investigate the influence of vitreomacular adhesion on the efficacy of pro-re-nata (PRN) ranibizumab mono- and verteporfin photodynamic therapy (PDT) combination therapy for neovascular age-related macular degeneration.

Design:
Post-hoc analysis of prospective randomized 12-month multicenter clinical trial data.

Methods:
Patient population: 255 treatment-naïve patients with subfoveal choroidal neovascularization.
Observation procedure: Assessment of the vitreomacular interface on monthly optical coherence tomography with division of patients into the following categories according to continuous one-year grading: Posterior vitreous detachment (n=154), dynamic release of vitreomacular adhesion (n=32), stable vitreomacular adhesion (n=51).
Main outcome measures: Mean best-corrected visual acuity (BCVA) letter and central retinal thickness changes at month 12 in the vitreomacular interface groups.

Results:
Mean BCVA changes at month 12 were +3.5 (posterior vitreous detachment), +4.3 (release of vitreomacular adhesion) and +6.3 (vitreomacular adhesion) in patients receiving monotherapy (p=0.767), and +0.1 (posterior vitreous detachment), +6.6 (release of vitreomacular adhesion) and +9.2 (vitreomacular adhesion) in patients receiving combination therapy (p=0.009). Mean central retinal thickness changes were -113µm (posterior vitreous detachment), -89µm (release of vitreomacular adhesion) and -122µm (vitreomacular adhesion) in monotherapy (p=0.725), and -121µm (posterior vitreous detachment), -113µm (release of vitreomacular adhesion) and -113µm (vitreomacular adhesion) in combination therapy (p=0.924). Mean ranibizumab retreatments during 12 months were 4.9 (posterior vitreous detachment), 6.6 (release of vitreomacular adhesion) and 5.3 (vitreomacular adhesion) in monotherapy (p=0.942).

Conclusion:
This study adds evidence that the vitreomacular interface status impacts functional outcomes and retreatment requirements. Patients with posterior vitreous detachment achieve acceptable results with fewer injections in PRN monotherapy, but loose potential vision gain with PDT. Patients with other vitreomacular interface configurations may potentially achieve optimized vision outcomes by combination of antiangiogenic treatment and vasoocclusive PDT.
Introduction

Intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF) agents is the current first-line therapy in the management of neovascular age-related macular degeneration (AMD).\(^1\) Anti-VEGF agents effectively block the relevant signal cascade involved in the pathogenesis of choroidal neovascularization (CNV), leading to reduction of vascular leakage and restoration of visual acuity.\(^2,4\) However, at the individual patient level, the magnitude and durability of the anatomical and particularly functional response to anti-VEGF therapy are markedly heterogeneous, which makes individualized dosing recommendations difficult. Despite meta-analysis of the Comparison of AMD Treatment Trials (CATT) and Inhibition of VEGF in Age-related choroidal Neovascularisation (IVAN) trials suggesting inferiority of discontinuous pro-re-nata (PRN) versus continuous monthly treatment, most clinicians aim to treat patients as little as possible, but as much as required to control the chronic and progressive disease course.\(^3-9\) Moreover, treatment results in real-life scenarios usually fail to reach the level of vision improvement reported from clinical trials.\(^10\) Although some microstructural characteristics that are predictive of treatment response have been identified, such as the presence of intraretinal cysts, the exact disease mechanisms responsible for individual response patterns are poorly understood.\(^11\) Therefore, identification of reliable morphologic parameters that could successfully guide individualized treatment represents an unmet medical need.

In this context, the condition of the vitreomacular interface is gaining scientific interest, while modern imaging strategies enhance the investigation of the vitreous itself.\(^12-16\) Typically, patients in the AMD age group show a complete posterior vitreous detachment, defined as separation of the posterior vitreous cortex from the retina and liquefication as well as anteposition of the vitreous body.\(^17\) A minority of patients (20-30\%) presents with persistent vitreomacular adhesion. As the vitreomacular interface configuration is a dynamic condition with potential transitions of one state to another, about 40\% of patients with initial vitreomacular adhesion experience a release of vitreomacular adhesion and conversion to posterior vitreous detachment during several months of anti-VEGF treatment, although release may already occur after a single intravitreal injection.\(^13,18,19\)

Several pilot studies reported an influence of vitreomacular interface configuration on treatment efficacy in anti-VEGF therapy for neovascular AMD, with less favorable outcomes for patients with vitreomacular adhesion.\(^13,14,20\) The first large prospective study showed distinct response patterns of intravitreal ranibizumab in eyes with posterior vitreous detachment. Equivalence of monthly versus quarterly treatment was proven as well as functional superiority of monthly versus quarterly treatment in patients with vitreomacular adhesion or dynamic vitreous release.\(^21\)

Apart from anti-VEGF therapy, the other approved therapeutic approach to neovascular AMD is verteporfin photodynamic therapy (PDT).\(^22,23\) PDT targets the neovascular lesion selectively via photochemical vasoocclusion with minimal effect on neurosensory retina and adjacent structures,\(^24,25\) and remains the treatment of choice for selected subtypes of CNV, such as polypoidal choroidal vasculopathy, which is exceedingly frequent in Asian populations, and CNV secondary to central serous
chorioretinopathy. Since PDT itself triggers the release of VEGF and other pro-
proliferative factors, the potential synergistic effect of PDT and anti-VEGF treatment in
neovascular AMD provided the rationale for the large-scale SUMMIT clinical trial
program evaluating combination of PDT with ranibizumab therapy. However, these
studies showed no benefit of combination therapy in terms of vision outcome, and
inconclusive results regarding a potential reduction in treatment frequency. Nevertheless, recent studies reported a beneficial effect of PDT in recalcitrant cases of
neovascular choroidal vasculopathy – PDT may provide a useful therapeutic tool in selected AMD patients, and adding weight to the current concept of personalized therapy.

This analysis focuses on a study based exclusively on a PRN regimen and compares
the impact of the vitreomacular interface condition on anti-VEGF monotherapy versus
combination therapy with PDT, with the aim to evaluate visual outcome and retreatment
frequency. A standardized analysis of prospective multicenter trial data was conducted
by an independent central reading center. Monthly OCT examinations were analyzed
and correlated with vision response and retreatment rate.

Methods

This post-hoc analysis of prospective multicenter clinical trial data was conducted in
compliance with the tenets of the Declaration of Helsinki and the International
Conference on Harmonization of Good Clinical Practice guidelines. The ethics
committee at the Medical University of Vienna, Austria, prospectively approved the
current study. At each participating multicenter study site, prospective ethics committee
or institutional review board approval was obtained for each site. All patients provided
written informed consent before enrollment into the trial. The study is registered at
www.clinicaltrials.gov (NCT00433017).

Monitoring and treatment protocol

All patients were participants of the MONT BLANC study, a randomized, single-masked
multicenter phase II study in patients with primary subfoveal CNV secondary to AMD.
Detailed information on trial design, inclusion and exclusion criteria and primary as well
as secondary outcomes have been published. In brief, MONT BLANC was designed
to compare the efficacy of ranibizumab (Lucentis, Genentech Inc., South San Francisco,
CA) monotherapy versus combination therapy of ranibizumab and PDT. Patients were
randomly assigned to receive either PRN combination treatment regimen (verteporfin
PDT 6 mg/m² and ranibizumab 0.5 mg) (arm 1) or PRN ranibizumab monotherapy
(sham infusion [5% dextrose] PDT and ranibizumab 0.5 mg) (arm 2). On day one,
verteporfin or sham infusion was followed by laser application at standard fluence
(PDTSF; wavelength, 689 nm; irradiance, 600 mW/cm²) for 83 seconds (light dose, 50
J/cm²). Intravitreal ranibizumab 0.5 mg (10 mg/ml) was administered a minimum of one
hour after the start of verteporfin PDT. Two consecutive ranibizumab injections were
performed at months one and two. After this loading phase, verteporfin PDT and
ranibizumab were administered according to predefined retreatment criteria at intervals
of 90 and 30 days, respectively, as described in detail previously. Retreatment parameters included a 100 µm increase in OCT-determined central retinal thickness from the lowest previous value, presence of subretinal fluid or new hemorrhage, best-corrected visual acuity (BCVA) decrease of 5 or more letters, and leakage on fluorescein angiogram.

All patients underwent standardized monthly monitoring according to protocol, including measurement of BCVA by certified examiners according to the Early-Treatment Diabetic Retinopathy Study protocol, slit-lamp examination and fundus biomicroscopy. At each visit, eyes were imaged by certified examiners using Stratus OCT (Carl Zeiss Meditec, Dublin, CA) after pupil dilation and before the administration of treatment. The scanning protocol included the typical standard scanning modi for clinical trials at the Vienna Reading Center and consisted of one “6-mm cross hair scan” (two sections perpendicular to each other with a resolution of 512 A-scans per section) and one “fast macular thickness map scan” (six 6-mm radial sections with a resolution of 128 A-scans per section) at each visit.

Evaluation of the Vitreomacular Interface

Analysis of the vitreomacular interface was performed on raw, masked OCT datasets at the Vienna Reading Center using a validated grading scheme as reported in detail previously. Briefly, trained and certified readers graded the vitreomacular interface configuration at each visit into one of the following states: 1) vitreous completely attached; 2) focal vitreomacular adhesion; 3) vitreous border antepositioned without contact to the macula; 4) vitreous border not visible. If vitreomacular traction was detected, the patient was excluded from further analysis since presence of vitreomacular traction was part of the MONT BLANC study exclusion criteria. The vitreomacular interface gradings from each visit were integrated after completion of the initial grading, and each patient was assigned to one of the following categories reflecting the vitreomacular interface configuration over the entire 12-month study period: 1) stable vitreomacular adhesion; 2) progressive release of vitreomacular adhesion; 3) posterior vitreous detachment. Representative grading examples for the three categories are provided in Figure 1.

Statistical analysis

Vitreomacular interface groups were compared by analysis of variance and chi-square tests at baseline with respect to age, BCVA, and central retinal thickness, intraretinal cysts, subretinal fluid and pigment-epithelial detachment, respectively. Further analyses were performed on differences to baseline. Differences after the loading phase and at the end of the first year were analyzed by two-factor analysis of variance with vitreous groups and treatment groups as factors. Further differences were tested by linear contrasts. Corrections were made for multiple comparisons but not for multiple endpoints. P-values less than 0.05 were considered statistically significant.

Results
Patient disposition

Of the 255 patients included in the trial, 237 patients had complete vitreomacular interface data over 12 months available according to protocol. The ranibizumab monotherapy arm (n=123) received a mean of 5.6 ranibizumab treatments following the loading dose. In the combination therapy arm (n=114), a mean of 5.2 ranibizumab injections and 1.8 verteporfin PDT retreatments were administered during the PRN phase.

Vitreomacular Interface Characteristics

Posterior vitreous detachment was the most common vitreomacular interface configuration (n=154, 65%) followed by vitreomacular adhesion (n=51, 22%) and release of vitreomacular adhesion (n=32, 13%). The distribution of vitreomacular interface configurations among the treatment arms as well as baseline characteristics were balanced as shown in tables 1 and 2.

Vision outcomes by vitreomacular interface configuration

In the ranibizumab monotherapy arm, mean BCVA gains from baseline to the end of the loading phase at month 3 were +8.4 for posterior vitreous detachment, +4.7 for release of vitreomacular adhesion and +6.6 for vitreomacular adhesion (p=0.420). During PRN maintenance therapy from month 3 until month 12, mean letter changes were -5.0 for posterior vitreous detachment, -0.4 for release of vitreomacular adhesion and +0.6 for vitreomacular adhesion (p=0.070). In the ranibizumab plus verteporfin combination arm, mean letter gains at the end of the loading phase were +2.7 for posterior vitreous detachment, +6.5 for release of vitreomacular adhesion and +9.3 for vitreomacular adhesion, showing superior outcomes for vitreomacular adhesion and release of vitreomacular adhesion with statistical significance at p=0.042. This difference was maintained during PRN maintenance until month 12, with mean changes of -3.1 letters for posterior vitreous detachment, +0.8 for release of vitreomacular adhesion and +0.0 for vitreomacular adhesion (p=0.212). Figure 2 shows BCVA results over time comparing the vitreomacular interface groups in the monotherapy and combination therapy arms.

Impact of vitreomacular interface configuration on monotherapy versus combination therapy

In patients with posterior vitreous detachment, mean letter gains after the loading phase were +8.4 with monotherapy and +2.7 with combination therapy, showing a highly significant advantage for monotherapy in patients with posterior vitreous detachment (p=0.003). This statistical significance was maintained over the entire follow-up of 12 months. Mean changes during PRN maintenance from month 3 until month 12 were -5.0 with monotherapy and -3.1 with combination therapy, without significant difference (p=0.296).

In patients with vitreomacular adhesion, combination therapy demonstrated superior visual outcomes during the early treatment phase, however, mean gains at month 3 were not statistically different at +6.6 letters in monotherapy and +9.3 in combination
therapy, p=0.406. Mean changes during PRN maintenance until month 12 were +0.6 letters with monotherapy and +0.0 with combination therapy, p=0.836.

No significant differences were observed in patients with release of vitreomacular adhesion, with mean changes at month 3 of +4.7 letters in monotherapy and +6.5 with combination therapy, p=0.661. From month 3 to month 12, mean letter changes were -0.4 with monotherapy and +0.8 with combination therapy, p=0.632. Figure 3 shows BCVA over time in monotherapy versus combination therapy in patients with posterior vitreous detachment, release of vitreomacular adhesion and vitreomacular adhesion.

Retreatment rates by vitreomacular interface groups

In the monotherapy arm, patients with posterior vitreous detachment received significantly less ranibizumab retreatments, with a mean number of retreatments after the loading phase at 4.9 in posterior vitreous detachment, 6.6 in release of vitreomacular adhesion and 5.3 in vitreomacular adhesion, p=0.018. No significant differences were observed in the combination therapy arm, where the mean number of ranibizumab retreatments was 4.7 in posterior vitreous detachment, 5.2 in release of vitreomacular adhesion and 5.8 in vitreomacular adhesion, p=0.101. The mean number of verteporfin PDT retreatments was 1.9 in posterior vitreous detachment, 1.5 in release of vitreomacular adhesion and 2.1 in vitreomacular adhesion, p=0.313.

Anatomical response by vitreomacular interface groups

In the ranibizumab monotherapy arm, the mean changes in central retinal thickness from baseline to month 12 were -113 µm in posterior vitreous detachment, -89 µm in release of vitreomacular adhesion and -122 µm in vitreomacular adhesion, without statistically significant difference, p=0.725. In the ranibizumab plus verteporfin combination therapy arm, mean central retinal thickness changes at month 12 were -121 µm in posterior vitreous detachment, -113 µm in release of vitreomacular adhesion and -113 µm in vitreomacular adhesion, without significant differences, p=0.924. Patients with posterior vitreous detachment showed a trend for a quicker central retinal thickness response during the loading phase with combination therapy; however this was not maintained over the 12 months of the study. Central retinal thickness responses over time in the vitreomacular interface groups are shown in Figure 4.

Discussion

This study investigated the influence of the vitreomacular interface condition on the efficacy of ranibizumab monotherapy and ranibizumab plus verteporfin PDT combination therapy for neovascular AMD. Since the overall trial design was based exclusively on a PRN strategy, this setting provides an ideal opportunity to analyze vision results and retreatment frequencies. While previous trials failed to detect a significant difference between combination- and monotherapy, the stratification for vitreomacular interface configuration in our study allowed for identification of distinct response patterns. Posterior vitreous detachment, the most frequent vitreomacular interface condition in the typical AMD age group, resulted in a significant inferiority of
the combination regimen that appeared as early as month one and persisted throughout the entire study year. In contrast, patients with vitreomacular adhesion demonstrated a diametrically opposite profile, with clear, early and sustained benefit from verteporfin plus ranibizumab combination therapy. Our results, in line with previously published outcomes, may have significant implications on individual patient management in the era of personalized medicine. They may also impact treatment for the increasingly diagnosed variant of AMD – polypoidal choroidal vasculopathy, in which combination therapy with PDT is the standard management.

The vitreomacular interface configuration in AMD has attracted scientific interest only in recent years likely due to optimized visualization using continuous OCT imaging. Vitreous adhesions seem to be more common in patients with CNV; probably as a secondary consequence of inflammatory processes at the level of the vitreoretinal junction.31-34 There is currently no evidence that vitreomacular adhesion per se might promote CNV development in patients with early AMD.35 Published scientific reports on the influence of the vitreomacular interface configuration on CNV treatment are largely limited to retrospective studies in heterogeneous patient populations under “standard of care” treatment conditions, with the exception of one large-scale prospective study by our group.13,14,21 In general, most studies conclude that patients with vitreomacular adhesion achieve poorer outcomes compared to patients without vitreomacular adhesion. On the other hand, we were recently able to show that patients with vitreomacular adhesion and release of vitreomacular adhesion could achieve excellent vision outcomes as long as treatment is performed in an aggressive and continuous fashion, i.e. monthly injections of an anti-VEGF agent.21 By contrast, patients with posterior vitreous detachment were shown to achieve moderate outcomes regardless of the treatment scheme.

Considering both published scientific literature and the current study, there is now solid evidence that the presence of a posterior vitreous detachment leads to adequate outcomes regardless of the applied dosing strategy. Consistent with our previous report, this study demonstrated that patients with posterior vitreous detachment required significantly less retreatment after the loading phase in an investigator-driven PRN regimen using ranibizumab monotherapy. Despite the low number of retreatments, vision outcomes in the monotherapy arm were favorable and consistent in magnitude with other PRN studies and our previous publication. We can conclude from these findings that patients with posterior vitreous detachment – identifiable by OCT at presentation – may be treated in a safe and effective manner using a personalized, discontinuous treatment approach.

Combination therapy with verteporfin in patients with posterior vitreous detachment, on the other hand, resulted in a reduction of potential vision gain already in the earliest phase of the study. This relative loss of vision is potentially attributable to the vasoocclusive effect of PDT on the exposed choriocapillaris, and subsequent damage to the neurosensory retina, particularly when using standard (full) fluence PDT.36 Nevertheless, verteporfin treatment effectively suppresses CNV growth and leakage, as shown by the rapid and sustained effect on central retinal thickness in the PDT arm.
The potential damaging effect of PDT becomes particularly visible in posterior vitreous detachment, which requires fewer retreatments.

Contrasting the well-defined population characterized by posterior vitreous detachment, patients with other vitreomacular interface configurations such as release of vitreomacular adhesion and stable vitreomacular adhesion show a much more heterogeneous outcome pattern, with variable response profiles by treatment regimen. In consideration of our previous results (demonstrating that these patients achieve unfavorable outcomes unless monthly injections are performed), it is confirmatory to see only moderate vision gains in this group under a PRN monotherapy regimen. Although the criteria for retreatment indication were less strict in the MONT BLANC study as compared to the “zero tolerance” regimen used currently, patients with vitreomacular adhesion and release of vitreomacular adhesion received significantly more injections than patients with posterior vitreous detachment. Despite the less specific response patterns in patients with vitreomacular adhesion and release of vitreomacular adhesion – which could also be attributed to sample size limitations – our results imply that this defined patient subgroup should preferentially not be switched to a discontinuous treatment regimen in clinical practice.

Moreover, patients with vitreomacular adhesion showed a durable beneficial effect of verteporfin combination therapy on functional outcomes as early as at month two. Although functional differences in this rather small patient group should not be over-interpreted, we may speculate that patients with vitreomacular adhesion could benefit from primary combination therapy of ranibizumab and verteporfin.

We have previously theorized that pharmacokinetic mechanisms impacting distribution, metabolism or clearance of anti-VEGF antibodies within the vitreous space may be responsible for the distinctive behavior of the various vitreomacular interface subtypes in terms of vision response and injection frequency. Our current findings on the efficacy of PDT may alternatively indicate that eyes with vitreomacular adhesion may exhibit additional disease components such as inflammation or mechanic stress, which are better amendable by PDT, a more intensive treatment targeting the neovascular structure directly. Clearly, our clinical observations can only generate hypotheses in this regard, and experimental studies should follow to add pathomechanistic insight.

This study has limitations in its employed imaging technology and sample size. Stratus OCT, the gold standard technology at the time the MONT BLANC trial was performed, has less power to image the vitreous as compared to modern spectral-domain and swept-source OCT systems. The differentiation between complete vitreous attachment and complete posterior vitreous detachment is especially challenging and sometimes impossible on Stratus images. However, a high degree of diagnostic accuracy can be achieved if multiple consecutive examinations are used to categorize patients, as this study did. In the AMD age-group where posterior vitreous detachment is reported to be 16-20 times more frequent than complete vitreous attachment, diagnostic errors with Stratus OCT as compared to spectral domain OCT occur in a magnitude of only 2% of cases and are therefore negligible.
Moreover, our ability to draw conclusions on the vitreomacular interface subgroups vitreomacular adhesion (n=51) and release of vitreomacular adhesion (n=32) are limited due to small sample size. This limitation affects all studies on vitreous adhesion in neovascular AMD, as this particular vitreomacular interface configuration is generally rare in the respective patient population. It is important to note, however, that conclusions on patients with posterior vitreous detachment are supported by a highly adequate sample size in this vitreomacular interface category.

In conclusion, our study adds further evidence that the vitreomacular interface configuration significantly impacts vision response profiles in anti-VEGF treatment even if combined with verteporfin PDT for neovascular AMD. Patients with posterior vitreous detachment demonstrated adequate BCVA response using PRN ranibizumab monotherapy, while the application of combination PDT resulted in a significant loss of potential vision gain. In contrast, patients with vitreomacular adhesion and release of vitreomacular adhesion showed a trend towards more favorable outcomes in combination therapy using verteporfin plus ranibizumab. In clinical practice, the results of our trial may support an individual selection of the most adequate treatment approach and regimen, while future clinical trial designs may require stratifying patients by vitreomacular interface configuration.
Acknowledgements

This clinical trial was registered at http://www.clinicaltrials.gov (NCT00433017).

Funding: The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged. The Department of Ophthalmology at the Medical University of Vienna served as a clinical site in the MONTBLANC study and received regular recompensation for contract research performed. The funding organizations had no role in the design or conduct of this study.

Financial disclosures: Ursula Schmidt-Erfurth is a consultant for Alcon, Bayer, Boehringer Ingelheim and Novartis. All other authors have no financial interest to disclose.

Contributions of Authors: Design of the study (SMW, CS; US-E); Conduct of the study (SMW); Collection, management, analysis and interpretation of the data (SMW, MR, MK, UM-S); Preparation of the manuscript (SMW); Review and approval of the manuscript (CS, MS, US-E).
References

Figure Captions

Figure 1. Grading examples for the three main vitreomacular interface configurations in study patients at baseline. **Top: Vitreomacular adhesion.** The posterior vitreous boundary is focally adhering to the retinal surface between the two arrows. Arrowheads indicate areas of vitreous detachment. **Middle: Release of vitreomacular adhesion.** In this case, the vitreous has separated from the macula. Further antepositioning of the vitreous boundary is however hindered by presumed attachment at the optic disc or retinal vessel arcades. In the current study, “release of vitreomacular adhesion” was also graded if a patient transitioned from vitreomacular adhesion to posterior vitreous detachment during the course of the trial. Arrowheads indicate areas of vitreous detachment. **Bottom: Posterior vitreous detachment.** Antepositioning of the posterior vitreous cortex beyond the imaging range of the optical coherence tomography device precludes observation of vitreous structures; the space anterior to the retina appears optically empty. Posterior vitreous detachment was only diagnosed if vitreous structures were never visible throughout all observations of a particular patient over a one-year time course.

Figure 2. Best-corrected visual acuity response in the vitreomacular interface groups. With ranibizumab monotherapy (top), all vitreomacular interface groups show comparable results. However, with verteporfin plus ranibizumab combination therapy (bottom), the subgroup with vitreomacular adhesion (squares) demonstrates superior benefits compared to patients with posterior vitreous detachment (filled squares). (BCVA, best-corrected visual acuity; PVD, posterior vitreous detachment; VMA, vitreomacular adhesion; RVA, release of vitreomacular adhesion.)

Figure 3. Monotherapy versus combination therapy in the vitreomacular interface groups: Functional outcomes. In patients with posterior vitreous detachment (top), the administration of PDT (squares) results in a loss of functional benefit compared to ranibizumab monotherapy (filled squares). Fewer differences are seen in the other vitreomacular interface groups, although patients with vitreomacular adhesion (middle) show an early benefit of PDT (squares) over ranibizumab monotherapy (filled squares). (BCVA, best-corrected visual acuity; PVD, posterior vitreous detachment; VMA, vitreomacular adhesion; RVA, release of vitreomacular adhesion; PDT, photodynamic therapy.)

Figure 4. Monotherapy versus combination therapy by vitreomacular interface groups: Anatomical outcomes. Apart from a more rapid reduction in central retinal thickness in the combination therapy arm (squares) in patients with posterior vitreous detachment (top), no significant differences were observed between ranibizumab monotherapy and combination therapy with verteporfin. (BCVA, best-corrected visual acuity; PVD, posterior vitreous detachment; VMA, vitreomacular adhesion; RVA, release of vitreomacular adhesion)
Table 1. Distribution of patients by vitreomacular interface configuration for monotherapy and combination arms.

<table>
<thead>
<tr>
<th></th>
<th>Posterior vitreous detachment n=154</th>
<th>Vitreomacular adhesion n=51</th>
<th>Release of vitreomacular adhesion n=32</th>
<th>Total n=237</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy % (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.2 (79)</td>
<td></td>
<td>21.1 (26)</td>
<td>14.6 (18)</td>
<td>100 (123)</td>
</tr>
<tr>
<td>Combination therapy % (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.8 (75)</td>
<td></td>
<td>21.9 (25)</td>
<td>12.3 (14)</td>
<td>100 (114)</td>
</tr>
</tbody>
</table>
Table 2. Baseline characteristics in the vitreomacular interface groups

<table>
<thead>
<tr>
<th></th>
<th>Posterior vitreous detachment</th>
<th>Vitreomacular adhesion</th>
<th>Release of vitreomacular adhesion</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>combination therapy</td>
<td>mono-therapy</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Age (mean±SD)</td>
<td>77±7.3</td>
<td>78±6.8</td>
<td>0.103</td>
<td>72±8.0</td>
</tr>
<tr>
<td></td>
<td>55±12.8</td>
<td>54±13.0</td>
<td>0.592</td>
<td>54±12.4</td>
</tr>
<tr>
<td>Best-corrected visual acuity (mean±SD)</td>
<td>338±119.8</td>
<td>344±102.2</td>
<td>0.636</td>
<td>334±103.3</td>
</tr>
<tr>
<td>Central retinal thickness (mean±SD)</td>
<td>337±100.5</td>
<td>339±136.6</td>
<td>0.636</td>
<td>325±86.7</td>
</tr>
<tr>
<td>Intraretinal cysts (%)</td>
<td>53.9</td>
<td>56.9</td>
<td>1.000</td>
<td>40.6</td>
</tr>
<tr>
<td>Subretinal fluid (%)</td>
<td>64.0</td>
<td>51.9</td>
<td>0.144</td>
<td>76.0</td>
</tr>
<tr>
<td>Pigment epithelial detachment (%)</td>
<td>57.3</td>
<td>60.8</td>
<td>0.744</td>
<td>68.0</td>
</tr>
</tbody>
</table>

SD, standard deviation.
Verteporfin + ranibizumab

Change of BCVA from baseline

Month

Posterior vitreous detachment
Vitremacular adhesion
Release of vitreomacular adhesion
Release of vitreomacular adhesion

Change of BCVA from baseline

Month

-10 -5 0 5 10 15 20 25 30

-10 -5 0 5 10 15 20 25 30

monotherapy
combination therapy
Release of vitreomacular adhesion

- monotherapy
- combination therapy

Change of CRT from baseline

Month
Biosketch Dr. Waldstein

Sebastian M. Waldstein is a supervisor at the Vienna Reading Center (VRC) and a resident at the Department of Ophthalmology, Medical University Vienna, Austria. He coordinates the Christian-Doppler-Laboratory for Ophthalmic Image Analysis, a multidisciplinary research endeavor aiming at the personalization of antiangiogenic treatment strategies for macular diseases by automated analysis and interpretation of large-scale optical coherence tomography data. His primary research interests are neovascular age-related macular degeneration and innovative retinal imaging.